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Supplementary Methods

Microbiome processing and feature extraction

Sequencing and reference mapping

We extracted 16S ribosomal RNA from mucosal tissue biopsies as described previously [1].
We clustered sequences into operational taxonomic units (OTUs) using the QIIME [2]
pick otus.py script with method “uclust_ref” and the --suppress new clusters
option, and all other default settings to map the sequences by references against the 97%
similarity reference sequences in the 13_8 Greengenes release [3]. 91.1% of sequences
matched the reference set. After mapping to the reference set, the samples contained
14,315,989 sequences, with 28,689.36 + 29,889.65 sequences per sample (mean # s.d.). For
further analysis we subsampled 2,000 sequences, without replacement, from each sample
to control for sequencing effort; this sequence depth is expected to be more than sufficient
to measure shifts in dominant taxa [4]. We collapsed OTUs according to the Greengenes
reference sequence taxonomy assignments, and carried forward taxon groups at all
taxonomic levels.

Patient selection criteria

All patients were diagnosed with Crohn’s disease or ulcerative colitis. Patients were
between the ages of 18 and 75. For all analyses except the meta-analysis of clinical
covariates and NODZ2, we excluded patients with a history of antibiotic usage in the month
preceding sampling. For the small number of patients that had more than one sequenced
sample, we selected a non-inflamed biopsy first. In the rare case that there was more than
one non-inflamed biopsy from the same general location we collapsed those samples
together; in the rare case that these samples were from different general biopsy locations
(terminal ileum versus colon) we selected terminal ileum first.

Pruning by correlation

In order to remove redundant signals from the data prior to performing genome-
microbiome association tests, we calculated all-against-all Pearson’s correlations within
taxa and KEGG pathways. We then clustered these correlations using complete linkage at a
threshold of 0.95 Pearson’s correlation. Within each cluster we selected the taxon/pathway
with the highest average abundance as the representative feature. Supplementary Table 6
contains a list of taxa that were clustered during this step.

Data transformation

To reduce heteroscedasticity while preserving zero-nonzero relationships within taxa, we
applied the arcsine-square root transform to all taxon relative abundances, as described
previously [5]. In subsequent linear association tests we excluded taxa with zero abundance
in greater than 25% of samples to avoid the effects of zero-inflated distributions on the
linear model. For all analyses we included only those taxa present in at least 10% of
samples.

Calculation of between-subject distances (beta diversity)

We calculated principal coordinates of between-sample (beta) diversity for association
testing with host genetic loci using the first three axes of principal coordinates analysis
(Poi) via the standard R function cmdscale. We included several measures of between-
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sample diversity. To measure the phylogenetic distance between samples we used weighted
UniFrac [6] distances calculated with QIIME and the Greengenes reference phylogeny.

Immunochip processing and feature extraction

NOD2 multiple variant aggregation

For NOD2 tests we extracted six known causal variants described previously [7]: rs2066844
(R702W), rs2066845 (G908R), rs5743277,1rs5743293 (fs1007insC), rs104895431 and
rs104895467. These variants are almost completely independent, and thus we were able to
simply take the sum of risk alleles present at any of the six across the cohorts, and still have
only subjects with zero, one, or two total risk alleles. We binned two subjects with 3 total
risk alleles across the six variants with the 2-risk allele subjects. We then used these counts
in subsequent tests for association with the microbiome. All six variants are location in
NODZ2 introns.

Immunochip fine mapping and credible set identification

The variants we tested for these genes were the top published variants in the largest GWAS
analysis to date [8], or the best proxies by linkage disequilibrium (LD) present on
Immunochip; however, as evidenced by our success with fine mapping of additional NOD2
variants, single variants may not represent the full signal of disease risk or microbiome
interaction within their respective loci. In a cohort of 33,938 individuals (partially described
elsewhere [8], the remainder unpublished) we used regions of high genotyping density on
the Immunochip to identify additional independent signals of disease risk near six other
SNPs (Supplementary Table 7). Although apart from NODZ incorporating these additional
variants had mixed results, we expect that as the number of testable loci grows with cohort
sizes, the approach will be essential in identifying genome-microbiome interactions at
complex risk loci.

We performed fine mapping using a Bayesian based approach (manuscript in preparation).
We constructed a posterior probability function of the independent associations given the
observed phenotypes and genotypes. The most probable set of independent associations
was identified by maximizing this posterior probability in using a greedy algorithm [9].
Uniform prior and steepest descent approximation were used in the calculations. The
credible set of SNPs was defined as the minimal set of SNPs such that their sum of posterior
probabilities is greater or equal to 95% [10]. SNPs within the credible set were ranked
based on their posterior probabilities.

Association testing

Clinical covariates

In all association tests we included linear covariates for antibiotic usage within the last
month, immunosuppressant usage within the last month, biopsy inflammation status, age,
at time of sampling, gender, general biopsy location (ileum, colon, or pre-pouch ileum),
CD/UC diagnosis, disease location (Montreal classification [11] locations E1, E2, or E3 for
UC; L1, L2, or L3 for CD), cohort membership (i.e. Boston vs. Toronto vs. Groningen). We
excluded time since diagnosis due to high correlation with age (Pearson’s correlation
coefficient = 0.487; p < 2.2x10-16). To avoid including redundant clinical covariates in the
linear regression, we identified clusters of redundant variables by the amount of
information they shared. To determine the level of informational overlap between
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covariates, we first recoded each categorical variable using multiple binary dummy
variables, and discretized each continuous variable using the infotheo package in R [12]. We
then calculated the maximum uncertainty coefficient [13] between each pair of variables.
The uncertainty coefficient measures the amount of information in one variable that cannot
be explained by another. For any group of variables in which each variable contained at
least 75% of the information in all the others, we selected the single variable with highest
entropy as a representative for the group. At this level all covariates were retained
(Supplementary Figure 7).

Linear tests with arcsine-square root transform

Due to common occurrence of samples with zero relative abundance of a given taxon, taxon
relative abundances are not readily amenable to power transform for normalization,
therefore we apply the arcsine-square-root transform prior to regression, as done in
previous microbiome studies [1, 5, 14]. The arcsine-square root transform applies naturally
to values on the unit interval, such as relative abundances. It has the effect of stabilizing
variance and reducing heteroscedasticity. It is similar to a log or power transformation in
that smaller values are decompressed and larger values are relatively compressed, but it
has the additional advantage that it handles zero values by definition. The general form of
the model for the relative abundance of a given bacterial taxon in subject i regressed on
genetic variant j, while controlling for various covariates, is therefore:

sin™!\[y; = Bo + B1Aij + B2Cisr + BsCio + BaCiz + - + &5

where Aj is the risk allele count for genetic variantj in subject i (0, 1, or 2); Ci;, Ciz, ... are the
clinical covariates described in the main text. After applying the arcsine-square root
transformation we performed standard multivariate regression in R[15] to test the null
hypothesis that coefficient §; was equal to zero.

Outlier detection and filtering

In every association test we excluded samples with values of the bacterial taxon relative
abundance that exceeded three times the interquartile range beyond the median value, as
estimated using the R function boxplot.

Microbiome-wide comparison across cohorts

To test for conservation of associations a particular genetic locus with the entire
microbiome across cohorts, we first obtained individual p-values and regression
coefficients for interaction of that locus with each individual microbiome feature. For a
given locus we then selected the subset of microbiome features that were nominally
significant (p < 0.05) in at least one cohort, and compared the directionality (signs) of the
coefficients for corresponding microbiome features from one cohort to the other. We
assessed the similarity of associations between cohorts using the phi coefficient, the
Pearson’s correlation of the positive/negative signs of the coefficients. We used the phi
coefficient of the signs of the regression coefficients instead of correlation of the actual
regression coefficients because the magnitude of the regression coefficients is highly
correlated with the mean of the particular microbiome feature being considered. Using the
sign tests for conservation of the directionality of the effect across cohorts. We identified
genes whose microbiome associations were conserved between at least two cohorts (FDR <
0.05 when comparing Boston to Toronto or Boston to Netherlands), then constructed a gene
interaction network from those using GeneMANIA [16]. The gene network displayed
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excludes those genes with no interactions found (LFNG, VWC2). We used GeneMANIA to
test for enrichment of functional modules at FDR < 0.05.

Imputation of missing clinical data

Recent antibiotics usage history was not collected for the Groningen cohort; we imputed
these values using a Random Forests classifier [17] with default settings in the R
randomForest package [18] trained on all taxa, functions, and clinical data for other
subjects, with estimated accuracy of 87.3% (96.74% expected accuracy for true “No”
subjects, 58.7% error for true “Yes” subjects); two of 135 Groningen subjects were
predicted to have had recent administration of antibiotics.

Clinical covariate sensitivity analysis

We verified that effect sizes and directionality were highly conserved regardless of
whether pre-pouch ileum samples were included or excluded (Spearman’s rho = 0.92; p=
4.0x10° for bacterial taxa; Supplementary 8) subjects over age 50 were excluded
(Spearman’s rho = 0.94; p= 4.1x10°; Supplementary Figure 9). We verified in a subset of
377 samples that the addition of covariates for mesalamine and steroid usage did not alter
the directionality of any nominally significant results (directionality was conserved for 6
out of 6 nominally significant taxon associations with NOD.2).



Supplementary Materials
Complex host genetics influence microbiome profile in inflammatory bowel disease

Supplementary Figures

Boston Toronto Groningen
Age
median + m.a.d. 38.1+11.3 43.9+15.0 40.75+15.8
Biopsy Location
Colon 111 29 141
lleum 41 19 21
Pre-pouch lleum 0 113 0
Disease
CcD 95 23 103
uc 57 137 59
Disease location
L1,L2,L3 19, 26, 50 3,7,12 26, 28, 49
E1, E2, E3 3,19,34 2,19,113 6, 14,39
Gender
M 67 82 78
F 85 78 84
Immunosuppresants
Yes 96 5 112
No 56 155 50
Inflamed biopsy
Yes 48 18 86
No 104 142 76
Years since diagnosis
median £ m.a.d. 11.8+9.1 15.3+10.1 6.4+6.5

Supplementary Figure 1. Summary of clinical covariates by cohort
Real-valued entries (Years since diagnosis, Age) show median +/- median absolute
deviation for robustness to outliers. Antibiotics entries include imputed values for
Groningen cohort (see Supplementary Methods).
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Colon lleum Pre-pouch
lleum
Age
median £ m.a.d. 39.0+14.1 36.5+13.1 48.4+11.5
Disease
CD 157 64 0
ucC 124 16 113
Disease location
L1, L2,L3 27,56,73 21,5,38 0,0,0
E1,E2, E3 9, 35,79 2,4,9 0, 13,98
Gender
M 131 39 57
F 150 41 56
Immunosuppresants
Yes 165 45 3
No 116 35 110
Inflamed biopsy
Yes 121 28 3
No 160 52 110
Years since diagnosis
median £ m.a.d. 85177 9.2+6.7 17.7 £10.6

Supplementary Figure 2. Summary of clinical covariates by biopsy location
Real-valued entries (Years since diagnosis, Age) show median +/- median absolute
deviation for robustness to outliers. Antibiotics entries include imputed values for
Groningen cohort (see Supplementary Methods).
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Supplementary Figure 3. Detailed schematic of host genome-microbiome association
testing methodology

Host genome-microbiome interaction testing involves potentially thousands or millions of
genetic polymorphisms and hundreds or thousands of bacterial taxa and genes. Full feature-
by-feature interaction testing is likely to be underpowered in all but the largest cohorts or
meta-analyses; therefore our methodology includes careful feature selection from both data
types. Raw genetic polymorphisms were derived from Immunochip data and filtered by
known IBD associations from large-cohort GWAS studies. NOD2 risk signal was calculated
as the sum of 6 independent causal variants as described in the main text. SNPs were
further filtered by minor allele frequency and genotyping rate. For each of the 163
previously published IBD-related SNPs, we counted the number of risk alleles for a given
subject (0, 1, or 2). Microbiome operational taxonomic units (OTUs) were grouped by
lineage at all taxonomic levels using Greengenes. These were filtered by prevalence (rate of
presence) and mean relative abundance. Clinical covariates were collapsed when they
contained redundant signals (see Methods); categorical variables were recoded as binary
dummy variables. Finally, linear tests were performed for association of microbiome
features with individual SNPs while controlling for clinical covariates.
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Supplementary Figure 4. Comparison of NOD2 association tests in subjects with UC
versus subjects with CD

A value on the horizontal axis represents the (negative log) significance of associations
between a bacterial feature and NOD2 including only samples from subjects with CD; a
corresponding value on the vertical axis represents the (negative log) significance of the
same test when including only subjects with UC. Although the two sets of subjects are
completely independent, the two sets of test results are highly correlated. a, taxon-NOD2
coefficients (p =.006, Spearman’s correlation 0.57).
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Supplementary Figure 5. Differentially abundant taxa on inflamed biopsies

a, the species Bacteroides uniformis is significantly less abundant on inflamed biopsies; a
number of unclassified OTUs from the genus Lactobacillus are significantly more abundant
on inflamed samples. These effects are true at different biopsy locations. b, a plot of
independent OTUs assigned to the unclassified Lactobacillus taxonomic group, showing
consistently higher mean relative abundance in inflamed samples than in non-inflamed

samples.
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Supplementary Figure 6. Between-individual genomic distance correlates with
microbiome distance

Scatterplot of genetic distance between pairs of individuals (Manhattan distance) against
distances between microbiomes of those pairs of individuals (Bray Curtis distance of genus-
level taxa).
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Supplementary Figure 7. Covariate redundancy clustering

Complete-linkage hierarchical clustering of clinical covariates based on pairwise
uncertainty coefficient. Lower pairwise uncertainty coefficient indicates higher shared
information between features.



Supplementary Materials
Complex host genetics influence microbiome profile in inflammatory bowel disease

a
Yo}
S - o
o
%) o
9 S 4
o o
% 0
o -
@ S
® 2
- o -
€ o
Q )
£ 2
wq—) o
le) o
o s _
[o\ =]
D n
o & _
z2 9
o
S _|
9

I I I I I I I
-0.010 -0.005 0.000 0.005 0.010 0.015 0.020

NOD2 coefficient, colon/ileum samples

Supplementary Figure 8. Sensitivity analysis of inclusion vs. exclusion of pre-pouch
ileum samples in NOD2 association

A value on the horizontal axis represents the (negative log) significance of associations
between a bacterial feature and NOD2 when excluding pre-pouch ileum samples; a
corresponding value on the vertical axis represents the (negative log) significance of the
same test when including the pre-pouch ileum samples. The two sets of test results are
highly correlated. a, taxon-NODZ coefficients (p = 4.0x10-¢, Spearman’s rho = 0.92). The
figure is not intended to demonstrate that the effects are the same when tested only in the
pre-pouch ileum samples, as that would require many more samples of that type. The figure
demonstrates that the directionalities and effect sizes of the NOD2-microbiome associations
do not change significantly when we choose between including and excluding the pre-pouch
ileum samples.
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Supplementary Figure 9. Comparison of NOD2 association tests with and without
subjects over age 50

A value on the horizontal axis represents the (negative log) significance of associations
between a bacterial feature and NOD2 when excluding samples from subjects over age 50; a
corresponding value on the vertical axis represents the (negative log) significance of the
same test when including all samples. The two sets of test results are highly correlated. a,
taxon-NOD?2 coefficients (p = 4.1x10-¢, Spearman’s correlation 0.94); The figure is not
intended to demonstrate that the effects are the same when tested only in the over-50
samples, as that would require many more samples of that type. The figure demonstrates
that the directionalities and effect sizes of the NOD2-microbiome associations do not change
significantly when we choose between including and excluding the over-50 samples.



Supplementary Materials
Complex host genetics influence microbiome profile in inflammatory bowel disease

Supplementary References

1. Huttenhower C, Gevers D, Knight R, Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG,
Petrosino JF, Abubucker S, Badger JH, Others: A framework for human microbiome
research. Nature 2012, 486:215-221.

2. Caporaso JG, Kuczynski ], Stombaugh ], Bittinger K, Bushman FD, Costello EK, Fierer N,
Pefia AG, Goodrich JK, Gordon ]I, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,
Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder ], Sevinsky JR, Turnbaugh P]J,
Walters WA, Widmann ], Yatsunenko T, Zaneveld ], Knight R: QIIME allows analysis of
high-throughput community sequencing data. Nat Methods 2010, 7:335-6.

3. McDonald D, Price MN, Goodrich ], Nawrocki EP, DeSantis TZ, Probst A, Andersen GL,
Knight R, Hugenholtz P: An improved Greengenes taxonomy with explicit ranks for
ecological and evolutionary analyses of bacteria and archaea. ISME ] 2012, 6:610-8.
4. Kuczynski ], Costello EK, Nemergut DR, Zaneveld ], Lauber CL, Knights D, Koren O, Fierer
N, Kelley ST, Ley RE, Gordon ]I, Knight R: Direct sequencing of the human microbiome
readily reveals community differences. Genome Biol 2010, 11:210.

5. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH,
Earl AM, Fitzgerald MG, Fulton RS, others: Structure, function and diversity of the
healthy human microbiome. Nature 2012, 486:207-214.

6. Lozupone C, Knight R: UniFrac: a New Phylogenetic Method for Comparing Microbial
Communities. Appl Environ Microbiol 2005, 71:8228-8235.

7.Rivas M a, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S,
Ellinghaus D, Burtt N, Fennell T, Kirby A, Latiano A, Goyette P, Green T, Halfvarson ],
Haritunians T, Korn JM, Kuruvilla F, Lagacé C, Neale B, Lo KS, Schumm P, Térkvist L,
Dubinsky MC, Brant SR, Silverberg MS, Duerr RH, Altshuler D, Gabriel S, et al.: Deep
resequencing of GWAS loci identifies independent rare variants associated with
inflammatory bowel disease. Nat Genet 2011, 43:1066-73.

8. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP,
Sharma Y, Anderson CA, others: Host-microbe interactions have shaped the genetic
architecture of inflammatory bowel disease. Nature 2012, 491:119-124.

9. Huang H, Chanda P, Alonso A, Bader JS, Arking DE: Gene-based tests of association.
PLoS Genet 2011, 7:e1002177.

10. Maller JB, McVean G, Byrnes ], Vukcevic D, Palin K, Su Z, Howson JMM, Auton A, Myers S,
Morris A, Pirinen M, Brown MA, Burton PR, Caulfield M], Compston A, Farrall M, Hall AS,
Hattersley AT, Hill AVS, Mathew CG, Pembrey M, Satsangi ], Stratton MR, Worthington ],
Craddock N, Hurles M, Ouwehand W, Parkes M, Rahman N, Duncanson A, et al.: Bayesian
refinement of association signals for 14 loci in 3 common diseases. Nat Genet 2012,
44:1294-301.

11. Satsangi ], Silverberg MS, Vermeire S, Colombel ]J-F: The Montreal classification of
inflammatory bowel disease: controversies, consensus, and implications. Gut 2006,
55:749-53.

12. Meyer PE: infotheo: Information-Theoretic Measures. 2012.

13. Press WH, Flannery BP, Teukolsky SA, Vetterling WT: Numerical Recipes in C: The Art of
Scientific Computing. 3rd edition. Cambridge University Press; 1992:761.

14. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward D V, Reyes JA, Shah SA,
LeLeiko N, Snapper SB, Bousvaros A, Korzenik ], Sands BE, Xavier R], Huttenhower C:
Dysfunction of the intestinal microbiome in inflammatory bowel disease and
treatment. Genome Biol 2012, 13:R79.



Supplementary Materials
{CI Complex host genetics influence microbiome profile in inflammatory bowel disease

15. R Core Team: R: A Language and Environment for Statistical Computing. 2012.

16. Zuberi K, Franz M, Rodriguez H, Montojo |, Lopes CT, Bader GD, Morris Q: GeneMANIA
prediction server 2013 update. Nucleic Acids Res 2013, 41(Web Server issue):W115-22.
17. Breiman L: Random Forests. Mach Learn 2001, 45:5-32.

18. Liaw A, Wiener M: Classification and Regression by randomForest. R News 2002,

2:18-22.



